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Abstract. We carry out a detailed analysis of the effective interaction arising from electron-phonon scat-
tering and its capability to produce the superconducting correlations observed in the carbon nanotubes. It
is shown that certain selection rules prevent the exchange of phonons in some of the interaction channels,
depending on the geometry of the nanotubes and on whether they are doped or not. In addition, we discuss
the mechanism working in nanotube ropes by which the electrostatic coupling among a large number of
metallic nanotubes leads to a substantial reduction in the strength of the Coulomb interaction. The scaling
equation for the superconducting response function is then improved nonperturbatively, by including the
exact contribution from forward-scattering processes. This allows us to estimate the boundary between
superconducting and nonsuperconducting phases in the ropes, as well as to constrain the actual values of
the strength of the effective attractive interaction.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
73.63.Fg Nanotubes – 74.78.Na Mesoscopic and nanoscale systems

1 Introduction

During the last years there has been much activity devoted
to study the transport properties of carbon nanotubes.
The fact that they can show metallic or semiconduct-
ing behavior depending on the helicity of the tubule [1–3]
makes them very suitable for the construction of devices
in molecular electronics. Carbon nanotubes offer also an
ideal ground to study the effects of electronic correlations,
which are enhanced in systems with reduced dimensional-
ity. In this respect, it has been paid attention mostly to
situations where the dominant interaction is given by the
Coulomb repulsion. It has been pointed out that the car-
bon nanotubes should be described then by the so-called
Luttinger liquid behavior at large length scales, and that
phases with broken symmetry could be only reached at
extremely low energies [4,5].

The carbon nanotubes may display actually different
behaviors in the transport measurements, depending es-
sentially on the quality of the contacts attached to the
nanotubes and the characteristic energy scale of the exper-
iment. For contacts with very low transparency, genuine
signatures of Luttinger liquid behavior can be observed
in the power-law dependence of the conductance around
room temperature [6,7]. At much lower energy scales, of
the order of a few meV for nanotubes about 1 µm long,
the effects of Coulomb blockade are present in the pat-
terns of the conductance [8,9]. On the other hand, when
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the contacts with the electrodes have good quality, a com-
pletely different regime is measured in which the electrons
may propagate ballistically along the nanotube [10,11].
In the case of nanotube ropes placed between supercon-
ducting contacts, it has been remarkable the observation
of supercurrents that can flow over lengths of several mi-
crons, providing a clear signature of the superconducting
proximity effect [12].

It is nowadays out of any doubt that certain nan-
otube samples may develop sensible superconducting cor-
relations. The most favorable situation for their observa-
tion corresponds to the case of thick ropes which are long
enough to maintain the coherence of the Cooper pairs.
This can be concluded from all the experimental evidence
that has been reported in reference [13]. In certain nan-
otube ropes, a drop of several orders of magnitude in the
resistance has been measured, showing the onset of a su-
perconducting transition in the system with a finite num-
ber of channels [14]. Strong superconducting correlations
have been also measured in nanotubes of very small radius
R ≈ 0.2 nm, inserted in a zeolite matrix [15]. In that kind
of experiment, the effects studied have one-dimensional
(1D) character, but clear superconductivity features have
been obtained from the tendency to expel the magnetic
flux and the divergent behavior of the conductance.

The observation of superconducting correlations im-
plies the existence of an attractive component of the inter-
action in the carbon nanotubes. The analyses of the elec-
tron correlations in the tubules have shown that it is not
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plausible the opening of an attractive channel arising from
the purely repulsive Coulomb interaction, at least without
going down to extremely low energies [4,5]. Then, it is
most likely that the attractive interaction comes from the
coupling to the elastic modes of the nanotube lattice [16].
It remains the question of how the large Coulomb repul-
sion present in the nanotubes may be overcome by the
attraction due to the phonon exchange. By means of a
simple estimate, it can be seen that the strength of the
latter is much smaller than the nominal strength of the
Coulomb interaction, for nanotubes with the typical radii
found in the ropes. It has been shown, however, that the
electrostatic coupling between a large number of metallic
nanotubes leads to a substantial reduction of the repulsive
interaction within each nanotube [17,18]. This would ex-
plain why the superconducting correlations develop pref-
erently in ropes with a large content of metallic nanotubes.

The purpose of the present paper is to accomplish a
detailed analysis of the effective interaction arising from
electron-phonon scattering and its capability to produce
the superconducting correlations in the carbon nanotubes.
Previous investigations have focused on the properties of
the armchair nanotubes [18]. We will pay attention here
to armchair and zigzag geometries, discerning the cases
of doped and undoped nanotubes. Certain selection rules
for the electron-phonon couplings can be shown to arise,
preventing the exchange of phonons in some of the chan-
nels for each particular instance. This has a direct impact
on the strength of the superconducting correlations, which
turns out to depend on the geometry of the nanotubes and
whether they are doped or not.

We will carry out our analysis having in mind the
physical parameters appropriate for the carbon nanotubes
found in the ropes. This will lead us to consider a strength
of the effective attractive interaction which corresponds to
the weak-coupling regime. We will see that, for sufficiently
large number of metallic nanotubes in a rope, the electron
system falls in a phase where the superconducting correla-
tions grow large at low energies. This is consistent with the
experimental results that have been reported recently in
reference [13]. The evidence found from measurements in
a number of different samples is that the correlations are
able to drive to a superconducting transition only above
a certain content of metallic nanotubes in the rope. This
information will allow us to estimate the boundary be-
tween superconducting and nonsuperconducting phases in
the ropes, as well as to constrain the actual values of the
strength of the effective attractive interaction.

The content of this paper is distributed as follows. In
the next section we discuss the effect of phonon exchange
and the selection rules that apply to different electron-
phonon scattering processes. Section 3 is devoted to set
up the framework to study the competition between the
repulsive Coulomb interaction and the effective interaction
arising from phonon exchange. In Section 4, we establish
the conditions that make possible the growth of the super-
conducting correlations, identifying the superconducting
phase in the diagram for the nanotube ropes. Finally, the
conclusions of our study are drawn in Section 5.

2 Effective interactions and selection rules
from electron-phonon scattering

The electrons couple to the phonons of the nanotube lat-
tice, and this gives rise to an effective electron-electron
interaction that may be attractive in some instances. The
interaction is retarded due to the phonon propagation be-
tween the two scattered electrons. This can be represented
in terms of an effective potential V (ω) depending on the
frequency ω [19]

V (ω) = −g(k, k′)g(q, q′)
ωk−k′

−ω2 + ω2
k−k′

(1)

ωk−k′ being the energy of the phonon with momentum k−
k′ and g(k, k′) the appropriate electron-phonon couplings
(defined below).

We observe from equation (1) that the effective inter-
action becomes attractive at frequencies below the scale
of the phonon energy ωk. This means that the high-energy
phonons should play the most important role in the devel-
opment of superconducting correlations in the nanotubes.
In this respect, most part of the acoustic phonons have a
dispersion relation with a linear dependence ωk ≈ vs|k| at
small momentum [20], which does not lead to a significant
range of attraction for the effective interaction. A detailed
study of the effect of acoustic phonons in a 1D system
has been carried out in reference [21], taking into account
the retardation of the interaction. It has been shown there
that, although the exchange of acoustic phonons may lead
to superconducting correlations in the 1D system, these
are in general very weak since the critical exponents de-
viate from the noninteracting behavior by corrections of
the order of (vs/vF )2, vF being the Fermi velocity in the
electron system. Given that the sound velocity vs for a lin-
ear phonon branch is more than 40 times smaller than the
Fermi velocity vF , we see that the influence of the acous-
tic phonons is negligible regarding the superconducting
effects in carbon nanotubes.

The above argument applies to the acoustic branches
with linear dispersion, and it also allows to neglect the ef-
fects of the mode corresponding to bending motion, with
quadratic dispersion relation. The rest of acoustic modes
have a finite energy at zero momentum, of the order of
10−2 eV [20], and such a small magnitude also implies im-
portant retardation effects. This is the case of the breath-
ing mode in carbon nanotubes with the radii typically
found in ropes, around 0.7 nm. One has to bear in mind,
however, that the characteristic energy of that mode is
inversely proportional to the nanotube radius, so that
it could lead to an attractive interaction in a significant
range of energies for nanotubes with very small radius R
around 0.2 nm, as pointed out in reference [22].

We turn then our attention to the high-energy
phonons, i.e. optical phonons at the top of the spectrum,
which have an energy around 0.2 eV [23–25]. We focus
on the evaluation of the electron-phonon couplings, which
dictate the strength of the effective interaction in (1). We
will represent them as gp,p′(k, k′), showing explicitly the
dependence on the respective subbands p and p′ to which
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Fig. 1. Linear branches in the low-energy electronic spectrum
of armchair nanotubes (upper diagram) and zigzag nanotubes
(lower diagram). The eigenvectors representing the relative
electron amplitudes in the two atoms of the lattice basis are
given near each linear branch. The labels 1 and 2 denote the
subband to which the linear branch belongs, according to the
symmetry of the eigenvector.

the in and out electron modes belong. This notation is
quite convenient, since the low-energy modes fall into two
different gapless subbands, which may be distinguished by
the different symmetry of the electron amplitudes in the
two-atom basis of the nanotube lattice.

We recall that the low-energy electronic spectrum of a
metallic nanotube is given by two pairs of linear branches
crossing at opposite points in momentum space, as shown
in Figure 1. For armchair nanotubes, the vector connect-
ing the two points can be taken along the direction of the
tubule axis [3]. The linear branches correspond then to
the different eigenvalues of a one-particle Hamiltonian op-
erating in the two-atom basis of the lattice [26], given by

H ≈ ±
(

0 k̃

k̃ 0

)
(2)

where the upper (lower) sign applies to the right (left)
crossing point, with respect to which the momentum k̃ is
measured in each case. We find therefore that the electron
modes fall into bonding and antibonding subbands, rep-
resented respectively by the outer and inner branches in
the upper diagram of Figure 1.

For the zigzag nanotubes, the vector connecting the
two points where the linear branches meet is transverse

to the longitudinal direction of the tubule [3]. The low-
energy modes near each crossing point correspond to the
different eigenvalues of the one-particle Hamiltonian [26]

H ≈
(

0 ik̃

−ik̃ 0

)
(3)

where k̃ represents the longitudinal momentum. As well
as for the Hamiltonian in (2), the eigenvectors of (3) bind
the relative electron amplitudes in the two atoms of the
lattice basis. The different symmetry of the eigenvectors
depending on the particular linear branch of the zigzag
nanotube is represented in the lower diagram of Figure 1.

The optical phonons correspond to localized displace-
ments of the nanotube lattice, what makes appropriate the
use of a tight-binding approximation for the calculation of
the electron-phonon couplings [27]. These depend on the
amplitudes of the electron modes, obtained in general from
the eigenvectors of (2) and (3) times a plane-wave factor,
and which we write as u

(p)
s (k), where the index s stands

for the lattice site. The electron-phonon couplings can be
represented by a sum over nearest neighbors of the atoms
in the unit cell of the nanotube [28]

gp,p′(k, k′) =
1

(µ ωk−k′ )1/2

×
∑
〈s,s′〉

u(p)∗
s (k)u(p′)

s′ (k′)(εs(k− k′)− εs′(k− k′))·∇J(s, s′)

(4)

where εs(k−k′) is the phonon polarization vector at site s,
J(s, s′) is the matrix element of the potential between
orbitals at s and s′, and µ is the mass per unit length.

The tight-binding approximation has been used in ref-
erence [28] in the computation of the electron-phonon cou-
plings involving acoustic phonons in the armchair nan-
otubes. It has been noticed that certain constraints arise
in the emission or absorption of phonons, which depend
on their particular polarization. The relations that exist
between the couplings for different subbands p and p′ can
be extended to the case of the optical phonons, and for any
kind of metallic nanotube [18]. Thus, it turns out that, in
general,

g1,1(k, k′) = −g2,2(k, k′) (5)
g1,2(k, k′) = −g2,1(k, k′). (6)

It can be also shown that the electron-phonon couplings
vanish for special kinematics. This can be observed in the
explicit expressions obtained in reference [28] for acoustic
phonons in the armchair nanotubes. We study in what
follows the selection rules that apply in the armchair and
the zigzag nanotubes, for optical as well as for acoustic
phonons.

We first show that, in the armchair nanotubes, the am-
plitude for phonon emission or absorption vanishes when
the in and out electron modes are in different subbands
and have opposite momenta:

g1,2(k,−k) = 0. (7)
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This can be seen by inspection of the formula (4), noticing
that one of the electron modes in each term of the sum
must have the lower amplitude of an eigenvector of (2),
while the other must have the upper amplitude (since the
points s and s′ belong to different nanotube sublattices).
If the latter mode belongs to the antibonding subband,
the former belongs to the bonding subband, and we have
a contribution to the sum in (4) of the form

e−ikxse−ikxs′ (εs(2k) − εs′(2k))·∇J(s, s′) (8)

where we denote by xs the position of the site s along
the nanotube. We can however reverse the order in which
we take the points s and s′ in the sum. In that case, the
mode in the antibonding subband gets the lower ampli-
tude of the eigenvector, and we have a contribution to the
coupling

−e−ikxs′ e−ikxs(εs′(2k) − εs(2k))·∇J(s′, s). (9)

The two contributions (8) and (9) are opposite, what
shows that the terms in (4) cancel out in pairs, when the
incoming and outgoing electrons are in different subbands
with opposite momenta (for armchair nanotubes).

Shifting now to the case of the zigzag nanotubes, one
can show that the electron-phonon coupling vanishes when
the electron reverses its momentum in the scattering pro-
cess, but remaining now within the same subband:

g1,1(k,−k) = g2,2(k,−k) = 0. (10)

This can be seen using the expression of the eigenvectors
of (3) for a zigzag nanotube, which have a lower amplitude
equal to i or −i when the upper amplitude is chosen equal
to 1. Let us consider the subband corresponding to the
first instance, as the other is completely equivalent. Then,
for a given term of the sum in (4), if the in mode has
the upper amplitude 1, the out mode must have the lower
amplitude i (since the points s and s′ belong to different
nanotube sublattices). We have a contribution of the form

− ie−ik̃xse−ikF yse−ik̃xs′ e−ikF ys′
(
εs(2k̃ + 2kF )

− εs′(2k̃ + 2kF )
)·∇J(s, s′). (11)

In this expression, we have supposed that the momen-
tum k decomposes into the longitudinal component k̃ and
the large transverse momentum kF of the Fermi point
(for the undoped system), while ys denotes the position
along the tangential direction of the nanotube. We com-
pare again with the term in which the lattice sites s and
s′ have been exchanged. In that case, the in mode has
the lower amplitude in the two-atom basis, and the out
mode gets the relative amplitude equal to 1, giving rise to
a contribution

ie−ik̃xs′ e−ikF ys′ e−ik̃xse−ikF ys
(
εs′(2k̃ + 2kF )

− εs(2k̃ + 2kF )
)·∇J(s′, s). (12)

The two contributions in (11) and (12) differ by a minus
sign. The argument allows then to conclude that the terms

in (4) cancel out in pairs when the incoming and outgoing
electrons are in the same subband with opposite momenta
(for zigzag nanotubes).

The large momentum of the Fermi point does not play
a significant role in the above argument, and it can be
shown actually that the selection rule holds also when
the in and out modes have opposite longitudinal momenta
about the same crossing point at kF or −kF . In this case,
there is a variation in the argument in that, if the term cor-
responding to (11) has now the factor eikF yse−ikF ys′ , the
term obtained by exchanging s and s′ contains instead the
factor eikF ys′ e−ikF ys . We have to bear in mind, though,
that each atom in the zigzag nanotubes has two near-
est neighbors with equal longitudinal coordinate xs and
opposite tangential coordinate ys relative to that of the
given atom. Thus, combining the respective terms in the
sum (4), we end up with contributions which contain the
factor cos(ikF (ys − ys′)) and whose only difference upon
the exchange of xs and xs′ is the relative minus sign as
in (11) and (12). We conclude that the selection rule (10)
also holds for scattering processes where the longitudinal
component of the momentum is reversed around a given
crossing point at kF or −kF .

The selection rule (10) is actually the consequence of
a more general rule in the zigzag nanotubes. We can state
it by saying that two electron-phonon scattering processes
with the same momentum transfer may have opposite am-
plitudes, if the momenta of the electrons lie in the respec-
tive processes at opposite sides of the given crossing point
at kF or −kF . By means of the same argument applied
above, one can easily see, for instance, that

g1,1(−k, 0) = −g1,1(0, k) (13)
g2,2(−k, 0) = −g2,2(0, k). (14)

The electron-phonon couplings g1,1(k, k′) and g2,2(k, k′)
are actually odd functions of the sum of the incoming and
outgoing longitudinal momenta in the zigzag nanotubes.
A similar property may be observed in the explicit com-
putation of the g1,2(k, k′) coupling in the armchair nan-
otubes [28]. The odd character of the couplings acquires
great significance when the nanotubes are not doped. In
that case, the electrons are scattered near kF or −kF , and
we are led to conclude that the electron-phonon scattering
amplitudes involving the couplings with alternating sign
must average to zero. This has in turn important conse-
quences for the effective interaction mediated by phonons,
as we will see in what follows.

3 Coulomb versus phonon-exchange
interactions in carbon nanotubes

We now study the conditions under which the effective in-
teraction coming from phonon exchange may balance the
repulsive Coulomb interaction in the carbon nanotubes.
In this respect, we discuss here a mechanism working in
nanotube ropes, according to which the electrostatic cou-
pling among a large number of metallic nanotubes leads
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to a substantial reduction in the strength of the Coulomb
interaction [18]. We assume that the long-range character
of the latter gives rise to the coupling between charges in
different metallic nanotubes of a rope. The Coulomb po-
tential projected onto the longitudinal dimension of the
nanotubes takes the form [29]

VC(k) = (e2/2π) log |(kc + k)/k| (15)

where k is the longitudinal component of the momentum
and kc, of the order of ∼ 1/R, is the memory that the po-
tential keeps of the finite radius of the nanotube [4]. The
logarithmic dependence of the potential (15) at small mo-
mentum transfer is a feature of the long-range interaction,
which remains unscreened in a 1D electron system with a
finite number of interaction channels [30,31].

It has been shown that the backscattering and Umk-
lapp processes mediated by the Coulomb interaction are
highly suppressed in the carbon nanotubes [4,5]. Their
amplitude turns out to be reduced by a factor of the order
of ∼ 0.1a/R (a being the C-C distance) with respect to the
nominal strength of the Coulomb interaction. The com-
petition between that and the effective interaction from
phonon exchange takes place mainly in processes involv-
ing the interaction of electronic currents in well-defined
linear branches. For this reason, we take as starting point a
model in which the elementary objects are the correspond-
ing electron density operators. These can be expressed in
terms of the Fermi fields Ψ

(a)
riσ(x) shown in Figure 1 for the

different linear branches:

Ψ
(a)†
riσ (x)Ψ (a)

riσ(x) = ρ
(a)
riσ(x). (16)

The label a runs over the different metallic nanotubes in
a rope, a = 1, . . . n. The index r = ± is used to label the
left- or right-moving character of the linear branch, and
the index i = ± to label the Fermi point. The index σ
stands for the two different spin projections.

The Coulomb interaction acts between any two den-
sity operators in (16) with a strength given by the po-
tential (15). We may carry out the discussion in terms of
the charge density operators ρ

(a)
riρ(k), formed by the sym-

metric combination of density operators for the two spin
projections

ρ
(a)
riρ(k) =

1√
2

(
ρ
(a)
ri↑(k) + ρ

(a)
ri↓(k)

)
. (17)

Moreover, it is convenient to define the combinations

ρ̃
(a)
1ρ (k) = ρ

(a)
++ρ(k) + ρ

(a)
−−ρ(k) (18)

ρ̃
(a)
2ρ (k) = ρ

(a)
+−ρ(k) + ρ

(a)
−+ρ(k). (19)

Regarding the interaction processes mediated by
phonons, we have to specialize to each particular nan-
otube geometry. In the case of the armchair nanotubes,
we have that the exchange of phonons gives rise to a
repulsive interaction between currents in different sub-
bands, according to the minus sign in equation (5). Thus,

if we define

ρ̃
(a)
+ρ(k) =

1√
2

(
ρ̃
(a)
1ρ (k) + ρ̃

(a)
2ρ (k)

)
(20)

ρ̃
(a)
−ρ(k) =

1√
2

(
ρ̃
(a)
1ρ (k) − ρ̃

(a)
2ρ (k)

)
(21)

the effective interaction mediated by phonons involves the
antisymmetric combinations ρ̃

(a)
−ρ(k), which incorporate

the relative minus sign that appears when coupling the two
different subbands. We can write then the integrable part
of the Hamiltonian containing just the forward-scattering
processes in the form

HFS =
1
2
vF

∫ kc

−kc

dk
∑
ariσ

: ρ
(a)
riσ(k)ρ(a)

riσ(−k) :

+
1
2

∫ kc

−kc

dk

2π

(
4
∑

a

ρ̃
(a)
+ρ(k) VC(k)

∑
b

ρ̃
(b)
+ρ(−k)

+4g
∑

a

ρ̃
(a)
−ρ(k) ρ̃

(a)
−ρ(−k)

)
(22)

where g(< 0) is the coupling that parameterizes the
strength of the phonon mediated interaction at small mo-
mentum transfer.

We recall that the amplitude for single-electron
tunneling between neighboring metallic nanotubes in a
disordered rope has to be highly suppressed, due to the
mismatch that exists in general in the orientation of the
respective lattices [32]. This has been confirmed in the ex-
periments reported in reference [33], where the coupling
resistance between tubes in a rope has shown to be about
three orders of magnitude above the typical resistance of
metallic nanotubes. It is justified then the approximation
made by taking for the kinetic term in (22) the sum of the
kinetic terms of the individual metallic nanotubes,

In the case of the undoped zigzag nanotubes, we have
to take into account the selection rules from equation (10).
These have a significant effect when the Fermi level is at
the crossing point of the linear branches. Although the
longitudinal momentum of a scattered electron may not
be exactly reversed by phonon emission or absorption,
the amplitude is largely suppressed for processes in which
the electron is promoted within the same subband from
below to above the Fermi level, or vice versa. Actually,
these processes average to zero, since the electron-phonon
coupling is an odd function of the sum of the longitudi-
nal momenta for the in and out modes, as shown in the
preceding section. Thus, for undoped zigzag nanotubes,
the influence of the phonon exchange is not significant in
forward-scattering interactions. This does not mean that
the Coulomb interaction has to be necessarily dominant
in that instance since, as we will see, there is still an im-
portant backscattering interaction mediated by phonons
that may trigger the superconducting correlations.

In the case of doped zigzag nanotubes, the most likely
situation is that both the in and out electron modes lie
below or above the point where the linear branches meet,
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depending on the position of the Fermi level. Therefore,
the selection rules in equation (10) are not relevant in
this case. There is however a difference with respect to
the previous description for the armchair nanotubes. It
can be seen that the interaction mediated by phonons be-
tween a left-moving and a right-moving current is now
always attractive. This follows from the complex conju-
gate relation that exists between the linear branches with
opposite chirality, as shown in Figure 1, and that extends
to the electron-phonon couplings with opposite momen-
tum transfer appearing in (1). On the other hand, currents
with the same right- or left-moving character belong to the
same subband, and their interaction by phonon exchange
has to be also attractive. The Hamiltonian for the inte-
grable forward-scattering interactions in the doped zigzag
nanotubes can be written in the form

HFS =
1
2
vF

∫ kc

−kc

dk
∑
ariσ

: ρ
(a)
riσ(k)ρ(a)

riσ(−k) :

+
1
2

∫ kc

−kc

dk

2π

(
4
∑

a

ρ̃
(a)
+ρ(k) VC(k)

∑
b

ρ̃
(b)
+ρ(−k)

+4g
∑

a

ρ̃
(a)
+ρ(k) ρ̃

(a)
+ρ(−k)

)
. (23)

An important fact regarding the Coulomb interaction
is that, as can be appreciated in (22) and (23), it operates
on the total charge density for all the metallic nanotubes
of the rope. Both Hamiltonians can be diagonalized by
changing to a set of variables given by the totally sym-
metric combination of the ρ̃

(a)
+ρ(k) operators, plus n − 1

antisymmetric combinations of them suitably defined to
make orthogonal the new variables. Thus, the Coulomb
interaction only acts in one of the 4n possible interac-
tion channels in a rope with n metallic nanotubes. That
explains why its effect is less significant in the nanotube
ropes as the number of metallic nanotubes increases. In
the absence of real screening of the long-range interaction,
the substantial reduction in the strength of the Coulomb
repulsion is the relevant effect in thick nanotube ropes,
arising as a consequence of the electrostatic coupling of
the charges in the different metallic nanotubes.

4 Superconducting correlations in carbon
nanotubes

We determine now the conditions under which the su-
perconducting correlations grow large in the carbon nan-
otubes. For this purpose, one has to study the appropriate
response functions R(k, ω), which are given by correlators
of the operators O(k, ω) representing the order parameters
for the condensation of the Cooper pairs:

R(q, ω) =
〈O(q, ω)O†(q, ω)

〉
. (24)

We will deal with the formation of Cooper pairs with zero
total momentum, so that we will stick to the case q = 0
in the above definition.

Ψ

R(0, ω      =)

Ψ(k)

(−k)

Fig. 2. Diagrammatic representation of the response function
corresponding to a superconducting order parameter. The dark
sector stands for the full vertex and the fermion lines represent
the full electron propagators.

The operators reflecting the s-wave and p-wave sym-
metry of the Cooper pairs correspond respectively to the
upper and lower signs in the following combination:

O(0, ω) =
∑

k

(Ψ++↑(k)Ψ−−↓(−k) ∓ Ψ++↓(k)Ψ−−↑(−k)

+Ψ−+↑(k)Ψ+−↓(−k) ∓ Ψ−+↓(k)Ψ+−↑(−k)) . (25)

The existence of four low-energy branches in the nan-
otubes allows in principle for more exotic possibilities, and
we can have for instance an operator representing an order
parameter with “d-wave” symmetry:

O(0, ω) =
∑

k

(Ψ++↑(k)Ψ−−↓(−k) − Ψ++↓(k)Ψ−−↑(−k)

− (Ψ−+↑(k)Ψ+−↓(−k) − Ψ−+↓(k)Ψ+−↑(−k))) . (26)

For the evaluation of the response functions at low fre-
quencies, we first resort to a perturbative renormalization
group approach. It is known that the derivative of each
response function

R(ω) =
∂R(0, ω)
∂ log ω

(27)

is bound to satisfy a scaling equation [34], which dic-
tates the power-law behavior of the response function at
small ω. The anomalous exponent for that behavior can
be obtained in perturbation theory by looking at the dia-
grammatic representation of R(0, ω). This is given in gen-
eral by a closed equation of the type represented in Fig-
ure 2 [34].

The terms obtained by expansion of the diagram in
Figure 2 depend actually on the high-energy cutoff Ec =
vF kc, which can be used to derive the scaling equation for
R(ω). The technique commonly applied consists in differ-
entiating the response function with respect to Ec, with
the aim of trading later this dependence by that on ω in
the functions with perfect scaling behavior [35].

The first perturbative orders of the response function
are formed through interaction processes in which a pair
of in electron modes to the left of the diagram in Fig-
ure 2 are scattered into a pair of out electron modes to
the right. We will follow here the convention of classify-
ing the four-fermion interactions into different channels
with respective coupling constants g

(j)
i [36]. The lower in-

dex discerns whether the interacting particles shift from
one Fermi point to the other (i = 1), remain at differ-
ent Fermi points (i = 2), or they interact near the same
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Fermi point (i = 4). The upper label follows the same rule
to classify the different combinations of left-movers and
right-movers, including the possibility of having Umklapp
processes (j = 3).

We observe that four different types of processes arise
to first order in the perturbative expansion of R(0, ω).
Accordingly, the scaling equation for R(ω) corresponding
to s-wave or p-wave symmetry turns out to be

Ec
∂ log R(ω)

∂Ec
= − 1

πvF

(
g
(2)
2 ± g

(1)
1 + g

(1)
2 ± g

(2)
1

)

+ O

((
g
(j)
i

)2
)

(28)

where the upper sign holds for singlet pairing and the
lower sign for triplet pairing. We remark that the interac-
tions mediated by phonons give negative contributions to
all of the four couplings that appear at the r.h.s. of equa-
tion (28) [18]. This goes in the direction of strengthening
the s-wave response function at large values of the cutoff
Ec or, equivalently, at small values of the frequency ω.
Consequently, only the development of superconducting
correlations with the s-wave symmetry is plausible, at
least in the weak-coupling regime of the phonon-mediated
interaction.

The Coulomb repulsion provides anyhow a large posi-
tive contribution to g

(2)
2 , that we can estimate as

v ≈ (e2/2π) log |kc/k0| (29)

taking an average momentum k0 ∼ 10−3kc in the infrared,
which is appropriate for nanotubes with a length of a few
microns. We assume that a reasonable value of the cou-
pling for the repulsive interaction in the nanotubes (with
an implicit dielectric constant) is given by e2/π2vF ≈ 0.5.
On the other hand, for the scattering processes relevant for
superconductivity, the values of the potential in (1) can be
estimated in terms of the variation of the matrix element J
with the C-C distance, given by ∂J/∂a ≈ 4.5 eVÅ

−1
,

and the typical Debye frequency ωD of the phonons, in
the range between 0.1 and 0.2 eV. Comparing with the
Fermi velocity vF in the carbon nanotubes, we find that
|g| ∼ (∂J/∂a)2/µω2

D ∼ 0.1vF . It turns out that, for in-
dividual nanotubes with a typical radius around 0.7 nm,
the contribution to the r.h.s. of (28) from the phonon-
mediated interaction cannot overcome the effect of the
repulsive interaction.

In nanotube ropes, however, we can compute the exact
contribution to the anomalous dimension in (28) from the
forward-scattering interactions, finding out that the ef-
fective attractive interaction prevails for sufficiently large
number n of metallic nanotubes. We improve then the
perturbative equation (28) replacing the term g

(2)
2 at the

r.h.s. by the nonperturbative contribution obtained from
the model developed in the preceding section. In this pro-
cedure, we should differentiate between superconducting
correlations in an armchair or a zigzag nanotube. More-
over, we have to distinguish between the cases of doped
and undoped nanotube ropes. In order to simplify the

computation, we will consider R(0, ω) for an armchair nan-
otube in the hypothetical case that the metallic nanotubes
in the rope are armchair, and for a zigzag nanotube as-
suming that the metallic nanotubes in the rope are zigzag
as well. This is justified since the choice of a particular
environment of metallic nanotubes does not have a signif-
icant influence on the effect of the electrostatic coupling
between them, while R(0, ω) depends essentially on the
geometry and doping level of the nanotube in which it is
computed.

We first consider the case of undoped armchair nan-
otubes. The anomalous dimension γ of the propagator for
the Cooper pairs in the model with Hamiltonian (22) has
been computed in reference [18], with the result that

γ =
1
2
− 1

2

√
1 − 4|g|/πvF +

1
2n

− 1
2n

√
1 + 4nv/πvF . (30)

Expanding to first order in the quantities v and g, we
obtain γ ≈ −(v − |g|)/πvF , which coincides with the per-
turbative result from the g

(2)
2 term at the r.h.s. of equa-

tion (28). This term is to be replaced now by the full
nonperturbative result. On the other hand, we take for
g
(1)
1 and g

(1)
2 the same strength, equal in absolute value

to |g|, relying on the fact that the energy of the phonons
exchanged with momentum 2kF becomes comparable to
the energy of the optical phonons near zero momentum.
According to the selection rule (7) for the electron-phonon
couplings in the armchair nanotubes, the last term propor-
tional to g

(2)
1 is absent in the undoped nanotubes, since

it stands for processes in which the electrons shift from
one Fermi point to the other, with exchange also of the
two subbands. Then, the improved scaling equation of the
response function for s-wave order parameter becomes

Ec
∂ log R(ω)

∂Ec
=

1
2
− 1

2

√
1 − 4|g|/πvF

+
1
2n

− 1
2n

√
1 + 4nv/πvF +

1
πvF

2|g|. (31)

When dealing with doped armchair nanotubes, the
only difference in the evaluation of R(ω) is that the con-
tribution from g

(2)
1 to the r.h.s. of (31) is nonvanishing,

since the selection rule (7) does not constrain that cou-
pling away from half-filling. Its contribution has attrac-
tive character, and it can be taken equal to |g| in abso-
lute value, when the system is suitably doped. Then, the
only change in equation (31) is that the last term becomes
3|g|/πvF in the case of the doped armchair nanotubes.

From the scaling equation for the response function, we
can determine the regimes in which the superconducting
correlations grow large at low energies in the nanotube
ropes. We observe that, for positive values of the total
anomalous dimension at the r.h.s. of (31), the response
function R(ω) has a power-law divergence for increasing
values of the cutoff Ec. On dimensional grounds, the de-
pendence of R(ω) on the frequency ω must come through
the ratio ω/Ec. Thus, the superconducting correlations are
triggered at low energies for positive values of the anoma-
lous dimension. We have represented in Figure 3 the region
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Fig. 3. Phase diagram of armchair nanotubes given in terms
of the effective coupling of the attractive interaction G =
4|g|/πvF and the number n of metallic nanotubes in a rope.
The full (dashed) line represents the boundary between the
lower nonsuperconducting phase and the upper phase where
superconducting correlations grow large at low energies in the
undoped (doped) nanotubes.

where this happens, in the phase diagram drawn in terms
of the strength |g| of the effective attractive interaction
and the number n of metallic nanotubes in the rope. We
notice the slightly greater extension of the superconduct-
ing regime in the doped armchair nanotubes.

Turning to the case of the undoped zigzag nanotubes,
we recall that the selection rules (10) on the electron-
phonon couplings imply then the absence of forward-
scattering interactions mediated by phonons. We can
improve again the perturbative equation (28) by includ-
ing the exact contribution to the anomalous dimension
from the forward-scattering processes mediated by the
Coulomb interaction. We end up in this way with the scal-
ing equation

Ec
∂ log R(ω)

∂Ec
=

1
2n

− 1
2n

√
1 + 4nv/πvF +

1
πvF

2|g|. (32)

We have taken into account that the contribution from g
(2)
1

vanishes now due to the selection rule (10), since that cou-
pling stands for processes with no exchange of subbands
in the present geometry.

In the case of the zigzag nanotubes, doping the sys-
tem leads to a most significant change, since it opens a
number of scattering processes by phonon exchange that
were forbidden at half-filling. The Hamiltonian for the
forward-scattering interactions in the doped zigzag nan-
otubes is given by (23). By means of a computation similar
to that in reference [18], one obtains that the contribution
from those interactions to the anomalous dimension of the
Cooper pair propagator is now

γ =
1
2
− n − 1

2n

√
1 − 4|g|/πvF

− 1
2n

√
1 + 4nv/πvF − 4|g|/πvF . (33)

Fig. 4. Phase diagram of zigzag nanotubes given in terms
of the effective coupling of the attractive interaction G =
4|g|/πvF and the number n of metallic nanotubes in a rope.
The full (dashed) line represents the boundary between the
lower nonsuperconducting phase and the upper phase where
superconducting correlations grow large at low energies in the
undoped (doped) nanotubes.

The perturbative expansion of this expression gives γ ≈
−(v−|g|)/πvF , to the first order in v and g. This approxi-
mation coincides again with the perturbative contribution
from g

(2)
2 to the scaling equation (28). This can be now

improved nonperturbatively by including the exact con-
tribution from the forward-scattering interactions in the
doped zigzag nanotubes:

Ec
∂ log R(ω)

∂Ec
=

1
2
− n − 1

2n

√
1 − 4|g|/πvF

− 1
2n

√
1 + 4nv/πvF − 4|g|/πvF +

1
πvF

3|g|. (34)

We discern the regimes where the superconducting cor-
relations grow large in the zigzag nanotubes by identify-
ing the points in the respective phase diagrams where the
r.h.s. of (32) or (34) become positive. This leads to the
boundaries that have been represented in Figure 4 for the
cases of undoped and doped zigzag nanotubes. The regions
where the response function diverges at low energies corre-
spond to the phases placed above the respective boundary
lines. We observe that, as expected, the phase of super-
conductivity has a sensibly smaller extension in the case
of the undoped zigzag nanotubes.

5 Conclusions

In this paper we have incorporated an exact treatment
of the long-range Coulomb interaction, leading to the
nonperturbative evaluation of its effects in the nanotube
ropes. Thus, we have shown that the substantial reduction
of the Coulomb repulsion due to the electrostatic coupling
between metallic nanotubes is a sensible effect, that should
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be measured specially in thick ropes. Looking at the phase
diagrams in Figures 3 and 4, we observe the general trend
that leads to the onset of the superconducting correla-
tions at sufficiently large values of n. The existence of the
boundary for the regime of superconductivity should be
confirmed experimentally through the dependence of the
transport properties on the content of metallic nanotubes
in the ropes.

Regarding the effective attractive interaction, we have
made a nonperturbative description of the forward-
scattering processes mediated by phonons, while the rest
of the processes have been considered at a perturbative
level. This means that the map of the different regions in
the phase diagrams can only be trusted away from the
upper limit 4|g|/πvF = 1. This precludes, in particular,
the elucidation of the existence of superconducting cor-
relations in individual carbon nanotubes, for large values
of the strength |g| of the attractive interaction. On the
other hand, the effective attractive interaction is in the
weak-coupling regime for the nanotubes found typically
in a rope. The order of magnitude of |g| depends on the
nanotube radius and, for the average value R ≈ 0.7 nm
in the ropes, it turns out that |g| ∼ 0.1vF . Although the
phonon-mediated interaction is renormalized at low ener-
gies, it can be shown that the scaling of the different cou-
plings is very smooth and that the perturbative approach
remains reliable down to temperatures well below 1 K [37].

The phase diagrams shown in Figures 3 and 4 re-
flect the different strength of the superconducting correla-
tions depending on the geometry of the nanotubes and on
whether they are doped or not. This investigation extends
the results from previous studies, which have focused on
the consideration of forward-scattering processes in arm-
chair nanotubes [18]. We conclude that the case of the
undoped zigzag nanotubes is extreme in that the phase
with superconducting correlations has the smallest exten-
sion in the phase diagram. This should not affect much
the transport properties of the ropes, which contain nan-
otubes with all kind of helicities, but it is a feature to
be considered when dealing with individual nanotubes. In
general, we have to expect a phase diagram evolving from
that in Figure 3 to the phase diagram in Figure 4, for nan-
otubes with different chiral angles interpolating between
armchair and zigzag geometries.

In the experiments where superconducting correlations
have been measured, genuine superconducting transitions
have been observed in ropes with a content of about
100 metallic nanotubes [14]. In the exhaustive report pre-
sented in reference [13], one can see that the transition is
not completed in some cases, in particular in a 1 µm-long
rope made of a total of about 45 nanotubes. This obser-
vation is consistent with the form of the phase diagrams
represented in Figures 3 and 4. Given that a supercon-
ducting transition has been observed in another 1 µm-
long rope mounted on the same kind of electrodes [13],
the absence of transition in the thinner rope can be re-
lated to the failure of the superconducting correlations to
grow due to the Coulomb repulsion. The thin rope, with a
content of about 15 metallic nanotubes, should correspond

to a point in the phase diagram outside the superconduct-
ing regime. From inspection of the diagrams in Figures 3
and 4, that would imply a value of the effective coupling
4|g|/πvF below 0.3, for the nanotubes found typically in
a rope.

Although we have not discussed the conditions that
make possible the three-dimensional Cooper-pair coher-
ence in the rope, it is not difficult to see that such an
effect goes along with the growth of the superconduct-
ing correlations in each metallic nanotube. This comes
from the fact that the same combination of couplings ap-
pearing at the r.h.s. of equation (28) drives also the be-
havior of the Cooper-pair tunneling amplitude between
neighboring metallic nanotubes in the rope [18]. Thus,
the same condition used to determine the onset of super-
conducting correlations in each nanotube applies also to
establish the coherence of the Cooper pairs in the trans-
verse directions of the rope. This clarifies the character of
the phases at the two sides of the boundaries drawn in
Figures 3 and 4. These boundaries mark also the points
where the coherence of the Cooper pairs is lost from the
three-dimensional point of view. The region below each
boundary corresponds therefore to a metallic phase of the
nanotubes, down to temperatures comparable to those of
the transitions reported in reference [13]. The stability of
these metallic phases is only perturbed by the scaling of
the phonon-mediated interactions to strong-coupling, but
this happens in general at much lower temperatures, when
nonperturbative effects may involve the breakdown of the
homogeneous description of the system [37].

References

1. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus,
Appl. Phys. Lett. 60, 2204 (1992)

2. J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett.
68, 631 (1992)

3. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68,
1579 (1992)

4. R. Egger, A.O. Gogolin, Phys. Rev. Lett. 79, 5082 (1997);
Eur. Phys. J. B 3, 281 (1998)

5. C. Kane, L. Balents, M.P.A. Fisher, Phys. Rev. Lett. 79,
5086 (1997)

6. M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E.
Smalley, L. Balents, P.L. McEuen, Nature 397, 598 (1999)

7. Z. Yao, H.W. Ch. Postma, L. Balents, C. Dekker, Nature
402, 273 (1999)

8. M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra,
A. Zettl, A. Thess, R.E. Smalley, Science 275, 1922 (1997)

9. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley,
L.J. Geerligs, C. Dekker, Nature 386, 474 (1997)

10. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Science
280, 1744 (1998)

11. W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M.
Tinkham, H. Park, Nature 411, 665 (2001)

12. A.Yu. Kasumov, R. Deblock, M. Kociak, B. Reulet, H.
Bouchiat, I.I. Khodos, Yu.B. Gorbatov, V.T. Volkov, C.
Journet, M. Burghard, Science 284, 1508 (1999)



326 The European Physical Journal B

13. A.Yu. Kasumov, M. Kociak, M. Ferrier, R. Deblock, S.
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34. J. Sólyom, Adv. Phys. 28, 201 (1979)
35. H.J. Schulz, in Correlated Electron Systems, Vol. 9, edited

by V.J. Emery (World Scientific, Singapore, 1993)
36. Yu.A. Krotov, D.-H. Lee, S.G. Louie, Phys. Rev. Lett. 78,

4245 (1997)
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